Kang, et al.:

Manuscript received June 5, 1992

Applications of a DPCM System with Median Predictors for Image Coding

APPLICATIONS OF A DPCM SYSTEM WITH MEDIAN PREDICTORS FOR IMAGE CODING

Dong Hee Kang; Jin Ho Choif Yong Hoon Lee* and Choon Lee**
* Department of Electrical Engineering
Korea Advanced Institute of Science and Technology
373-1 Kusong-Dong, Yusung-Gu, Taejon, Korea 305-701
** Consumer Electronics Research Lab., GoldStar,
16, Woomyeon-Dong, Seocho-Gu, Seoul, Korea 137-140

ABSTRACT

A DPCM system employing a median predictor, which is
called the predictive median-DPCM(PM-DPCM), is proposed.
An interesting property that in PM-DPCM transmission noise
is olten isolated and not propagated over the reconstructed signals
1s observed and is analyzed deterministically and statistically.

In order to examine the performance characteristics of the
PM-DPCM, it is applicd to real image signals. The experimental
results indicate that the PM-DPCM outperforms the standard
DPCM when transmission errors occur, and that the former
performs like the Jatter under noise-free conditions.

1. INTRODUCTION

Dilferential pulse code modulation (DPCM) is an efficient
data compression technique, which is useful for reducing
transmission rate ol digital picture information. The use of
DPCM in image coding, however, requires some caution when
wransmission errors oceur, because in the reconstructed DPCM
image wransmission errors tend to propagate and severely degrade
the image quality[1]. To overcome the difficulty, crror robust
schemes such as hybrid DPCM| 1-3] have been proposed.

In this paper, we introduce a DPCM system employing
nonlinear median predictors, which is called the predictive median
(PM)-DPCM, and show that the PM-DPCM is resistant Lo
wansmission crrors. Specilically, itis observed that transmission
errors are often isolated and not propagated in the PM-DPCM
images. We shall analyze the characteristics ol PM-DPCM, and
compare its performance with those of other DPCM systems
through experiments.

The organization of this paper is as follows. In section 2,
1-D and 2-D PM-DPCM systems are defined and their propertics
are examined. [n section 3, some statistical propertics of PM-
DPCM ure derived. Experimental results are presented in section
4.

2. PREDICTIVE MEDIAN - DPCM

2.1 One-Dimensional PM-DPCM
Fig.l illustrates o DPCM system. In 1-D PM-DPCM the

prediction y(n) of the input y(n) is given by

y(n) = median{y(n-1).y(n-2), ... .y(n-M)} (n
where M is an odd integer. The PM-DPCM system is able to
reconstruct an original signal at the receiver just like a DPCM
system using a lincar predictor. Neglecting the effect of quantizer
[i.e., assuming the prediction error x(n) 1s equal to the quantized
prediction error x(n)] and assuming noisyless transmission
channel, the reconstructed signal y(n) can he expressed as

y.(n) = x(n) + median{y,(n-1), ... ,y.(n-M)} (2)

It y.(n-i) = y(n-1), i=12,.....M in Eq.(2), then y (n) = y(n)
because the prediction error signal x(n) is

x(n) = y(n) - median{y(n-1), ... ,y(n-M)} (3)

For example, consider Fig.2 in which PM-DPCM with M=3 is
applied to an input sequence (the initial values of y(n) and x(n)
are set to zero). Note that the reconstructed signal y (n) is
identical to the original input signal y(n).

The variance of prediction error of the PM-DPCM is
usually larger than that ot the standard DPCM with lincar
predictors. This fact is confirmed in the following section through
statistical analysis. The robustness of the PM-DPCM to
transmission errors can be seen from an example in Fig.3.
Fig.3(a) and (b) depict the received prediction error signal x (n)
and the reconstructed signal y (n), respectively, of the PM-
DPCM which is considered in Fig.2. (Again, tor simplicity,
quantization effects are neglected). The received signal x (n) s
identical to x(n) in Fig.2(¢) except at n=6 where the signal
value has been changed by a transmission error. ILis interesting
Lo note that reconstructed signal y ( 6) is also identical to the
signal in Fig.2(d), which is reconstructed under noise-tree
conditions, except at n=6. The noisy value at n=6 has been
isolated and not propagated over the reconstructed signals. This
phenomenon is explained as follows. In Fig.2(a) y(6) is a local
maximum value and cannot be the output of the median predictor
at any time indices (sec Fig.2(b)). In Fig.3(a), the transmission
noise caused the reconstructed value y(6) larger than the original
value y(6). Thus the predicted values of the decoder remain the
same as those of the encoder, that is, for n=7.8,9

median{y(n-1),y,(n-2),y(n-3)} =
median{y(n-1),y(n-2),y(n-3)}, (4)

and we get y,(n)=y(n). This example indicates that PM-DPCM
can often isolate transmission bit errors. A suffcient condition
for the error isolation is presented next.

Observation 1 : Assume only one error occurs at time index
n=n,, i.c., x(n,) # x.(n,) and x(n) =x.(n) for all n # n, The
error is isolated if the reconstructed value y(n,) is greater(less)
than median{y (n-1),y,(n-2),.....y,(n-M)} whenever the original
value y(n,) is greater(less) than median{y(n-1),y(n-2)......y(n-
M)} foralln, n, + 1 <n <n,+ M.

The proof of Observationl is obvious and thus omitted. For

the case of multiple errors Observationl is not valid unless
errors oceur sparsely. Now we examine the case where an
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error is not isolated but propagated. Assume again an crror has
occurred at time index n,. If we denote the propagation error
by e,(n), n>n,, then

eyn) = yn) - y(n)
x,(n) + median{y (n-1), 1= 1. M}
- [ x(n) + median{y(n-1),i=1,...., M}]
median{y (n-i), i = ..M} -
median{y(n-i).i=1,....M}, (5)

where the third equality holds because it is assumed that
X (m)=x(n) for n>n,. For n < n, ¢, (n) is assumed to be zero.
Next we show that Icp(n)l is smaller than the noise value at
n=n,.(Throughout the analysis, the clfect of quantization is
ignored.)

Observation 2 : Suppose that a transmission crror value ¢ is
superimposed on the signal x(n) at tme index n,. i.c.,
x(n,)=x(n,)+e. Then the propagation crror e, (n) is bounded by

min{cp(n-i), i=l,.....M} £

ep(n,) < mux[cp(nfi), =1, M} (6)

for all n>n,,.

This observation shows that the present error ¢ (n) 1s bounded
by the past errors e, (n-1), =1, .M. Since Ose (ng+1)<lel
then ¢ (ng)<lel for all n>n,.

Fig.4 illustrates the performance charactenistics of the
proposed PM-DPCM(M=3) when it is applicd 10 a row ol an
image. Fig. 4(a) and (b) show the input and the prediction
error signal, respectively. The received prediction error signal
in Fig.4(c) has an error value ¢=100 at n=150). The reconstructed
signal and the difference between the original signal and the
reconstructed signal are shown in Fig.4(d) and (¢), respectively.
In this case the transmission crror has not been isolated, yet
error propagation after n=150 1s almost negligible. This is
confirmed in Section 4 through experiments with real images.

Lastly in this subsection, it is pointed out that 1-D PM-
DPCM loses edge information when a transmission ervor appears
atedge locations of an input signal. This is tHustaed by applying
[-D PM-DPCM to a binary input with an edge. Fig.5¢) shows
the performance of the PM-DPCM(M=3) under noise-{ree
conditions. As expected, the original binary signal having an
edge is pertectly reconstructed. In Fig.5(h), a transmission
crror oceurred at the edge location and the edge information in
the prediction error signal has been halved, so that the edge
disappeared in the reconstructed signal; the orgial signad cannot
be reconstructed. This fact will limit the use ol 1-D PM-DPCM.
In the next subscetion, we shall show that such a problem does
not oceur in 2-D PM-DPCM.

2.2 Two-Dimensional PM-DPCM

2-D PM-DPCM cmployes 2-D median predictors. We
shall consider two types of 2-D median predictors which are
defined as follows:

Med! : ;(m,n) = median{y(m-1,n+1).y(m-1,n),y(m,n-1)} (7)

Med2 : ;(m,n) = median{y(m-{.n-1),y(m-1n),
y(m-1.n+1),y(mn-1)} (&)

The predictors in (7) and (8) will be referred w0 as Med1 and
Med?2 predictors, respectively. In (8), the median of four values
1s the average of the two median values. As with the 1-D case,

the 2-D PM-DPCM has the error isolation property: Observations
1 and 2 can be extended directly to the 2-D case. Fig. 6 shows
the behavior of 2-D PM-DPCM uaround edge locations. The
original vertical edge is reconstructed under noise-lree
conditions. When a transmission error oceurs at an edge location,
the 2-D PM-DPCM systems distorts the edge but retains most
edge information. Tt should be noted that the PM-DPCM with
Med2 performs considerably better than the one with Med1.
Similar observations can he made for edges with other directions.

3. STATISTICAL PROPERTIES OF
THE PM-DPCM

In this scction, the variance of the prediction errors
associated with the 1-D PM-DPCM are derived and compared
with those of the standard DPCM. Again, the quantization effects
are neglected throughout this section. The prediction error x{n)
in the PM-DPCM is

I, ... M}

x(n) = y(m) - median{y(n-1), i M
i=1,... ML )

= median{y(n) —‘y(n~i‘),

[

The variance of x(n) can be caleulated il the joint probubility
density function(pdf) for y(n) - y(n-i), i=1,.... M in (9} is
known. Assumed that the input signal y(n) is an
AR(autorcgressive) process with o Gaussian distribution.
Specifically,

y(n) = 0.9y(n-1) + w(n), [§10)]
where w(n) is an independent identically disutbuted(ii.d.) white
Gaussian noise of N(O,1). Then we have Var|x(n)] = E[x(n)]
because y(n) is & WSS process with a Gaussian distribution
and accordingly E[x(n)}=Elmedian{y(n)-y(n-i).i=1,... M}| =

Ely(n-i)] = E[y(n)] = 0. Therefore,
Var[x(n)] =

. 2
“[mcdlan{vl,...,vM}J PV h-aes Vadvdvyy
R

(lny

where v, = y(n) - y(n-i), i=1....M and p(v,.v,....,vy,) is the
joint pdf of v, v,,..vy,. Var[x(m)] is evaluated numerically for
M=3, and we get Var{x(n)] = 1.711. The variance of the
prediction errors ol the optimal lincar predictor for the AR
process in (10) is equal to the variance of w(n) which 1s one.
As expected, the median predictor has a larger variance than the
optimal lincar predictor. This fact is also true for 2-D median
predictors. Discussions on the extension to the 2-D case 1s
straightforward but somewhat cumbersome, so omitted here.

4. EXPERIMENTAL RESULTS

The PM-DPCM und other DPCM systems are applied to
real image signals to compare their performance characteristics.
The predictors considerd include Med ! and Med? for 2-D PM-
DPCM, the I-D median predictor of span 3, the [-D linear
predictlor y(m,n) = 0.9y(m,n-1), some 2-D lincar predictors and
the FIR-median hybrid(FMH) predictor(4]. The FMH und 2-D
lincar predictors are defined as follows:

FMH : ;(m,n) = median{y(m-1.n), y(m,n-{),y(m-1.n).
,p] where
£ =0.5y(m.n-1)+0.25[y(m-1.n) + y(m-1,n+1)],

p=y(mn-1)+ y(m-1,n) - y(m-1,n-1) (12)
Linl :y(m.n) = 09y(m-1.n) + 0.9y(m.n-1)
-0.8ly(m-1.n-1) (13
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Lin2 0.25y(m-1.n) + 0.5y(mn-1)

0.25y(m-1,n+1)

:fﬂm.n) =
(14)

The Linl predictor in (13) is an optimal linear predictor for a
2-D AR process, and the Lin2 predictor in (14) has been
proposed for encoding television signals[S]. Lena image has
250x256 pixcls. All DPCM systems considered in this section
employes the 4-bit quantizer specitied in Table2. Itis assumed
that transmission bit errors oceur with the same probability,
suy P, atcach bitof x(n).

Fig. 7(a) shows the original image which consists of
256x256 pixels with 8-bits of resolution. Under noisc-lree
conditions (P, = ), all the DPCM systems produced images
which are very close o the original; the reconstruced images
will not be presented. Fig. 7 (b)-(h) show the reconstructed
DPCM images when the transmission bit error probability P, =
0.005. Tt is seen that the 2-D PM-DPCM systems outperformed
the rest. Between the two 2-D PM-DPCM systems, the one
employing the Med?2 predictor performed better than the other:
The 2-D PM-DPCM with Med! distorted some edges. The
DPCM with Lin2 is seen to be more robust to transmission
cerrors than the DPCM with Linl. It is apparent that the DPCM
systems with Linl, FMH and the 2-D lincar predictor are
valnerable o transmission errors. In 1-D PM-DPCM some
edges are lost due to ransmission errors at edge locations.

5. CONCLUSIONS

A DPCM system using a median-type predictor has been
proposed and its performance characteristics were analyzed. It
was shown that the system is insensitive Lo ransmission errors.
The experimental results indicate that the PM-DPCM can
outperform the conventional DPCM when transmission errors
oceur, and that the former performs like the latter under noise-free
conditions. In addiion, the implementation of median predictors
is very simple. The PM-DPCM is a usclul alternative 1o
conventional DPCM systems in encoding images.
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Table 1. The quantizer specifications. For a negative
input value X, the representive value y is determined

with its absolute value Ixl and -y is given to the output
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Figure 2. (a) The original signal, (b) ouputs of the median _
predictor of  span 3, (¢) outputs of the encoder, (d) the Figure 3. (a) x(n) corrupted by channel notse,
reconstructed signal (Quantization effect is ignored.) h) the reconstructed signal from corrupted x(n)
g ( g
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Fig. 4. An example for one row of real image signals. (a) the original signal y(n), (b) the prediction error signal x(n), () the

received error signal x(n), (d) the reconstructed signal y,(n), (¢} the difference between y(n) and y.(n), ly(n)-y(n)l.

original ym: 0001111 original ym: 0001111

ransmission error;,
prediction error x(n): 0 00 1 100

predictionerror  x(n): 0000 100

reconstructed  y(ny: 000 1111 Ym: 0000000

reconstructed
(a) ®
Fig. 5. The 1-D PM-DPCM of a binary input signal with an edge. All initial values are zero and M=3. (a) Noise-free case,

(b) Noisy casc.
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Fig. 6. The 2-D PM-DPCM ol a 2-D binary input signal with a vertical edge.
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(d) (@) ()

@ ()

Fig. 7. (a) Lenaimage. When P, =0.005, experimental results from (b) the 1-D median predictor, (¢) the 1-D linear predictor,

(d) the Med] predictor, (¢) the Med2 predictor, (f) the FMH predictor, (g) the Linl predictor, (h) the Lin2 predictor.
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